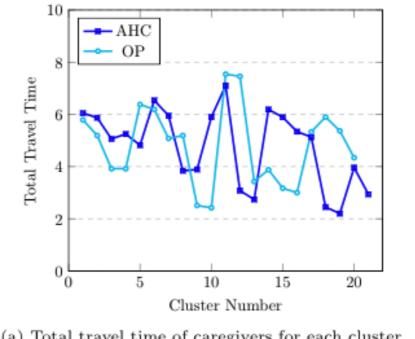
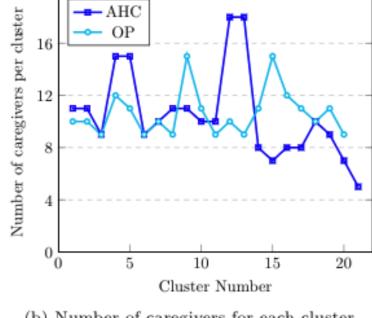
A clustered-based framework for the home health care planning problem

Delaram Pahlevani¹, Babak Abbasi², John Hearne¹, Andrew Eberhard¹

1. School of Science, RMIT University, Australia 2. College of of Business and Law, RMIT University, Australia Correspondence: delaram.pahlevani@rmit.edu.au

Introduction


Real-Life challenges for home care providers in Australia:


- Over the 20 years (1999-2019), the proportion of the population aged 65 years and over increased from 12.3% to 15.9%.
- At 30 June 2020, 42,436 people were using home care services.
- There were 55,483 people who were seeking a home care service at 31 March 2021.
- Home care providers spends a significant amount of money to compensate workers for travel distance, because the current plan of caregivers is inefficient.
- Australia is a multicultural country, and it is not surprising that clients request to be visited by a carer who can speak in their native language
- Clients and workers may have any preferences which must be considered.

Female worker Male worker

Male worker

Figure 4: =Final clustering using AHC-MKM (Left) and OP-MKM (Right) algorithms. Different colours used to specify different clusters in each graph.

 $\mathbf{R}\mathbf{M}\mathbf{I}\mathbf{I}\mathbf{I}$

UNIVERSITY

(a) Total travel time of caregivers for each cluster

(b) Number of caregivers for each cluster

Figure 5: Comparison the performance of OP-MKM and AHC-MKM algorithms in finding the total travel time and number of caregivers for each defined cluster. the total number of OP-MKM and AHC-MKM are 20 and 21 respectively.

Instance No. Clusters No.C Objective TT (h) TD (km)

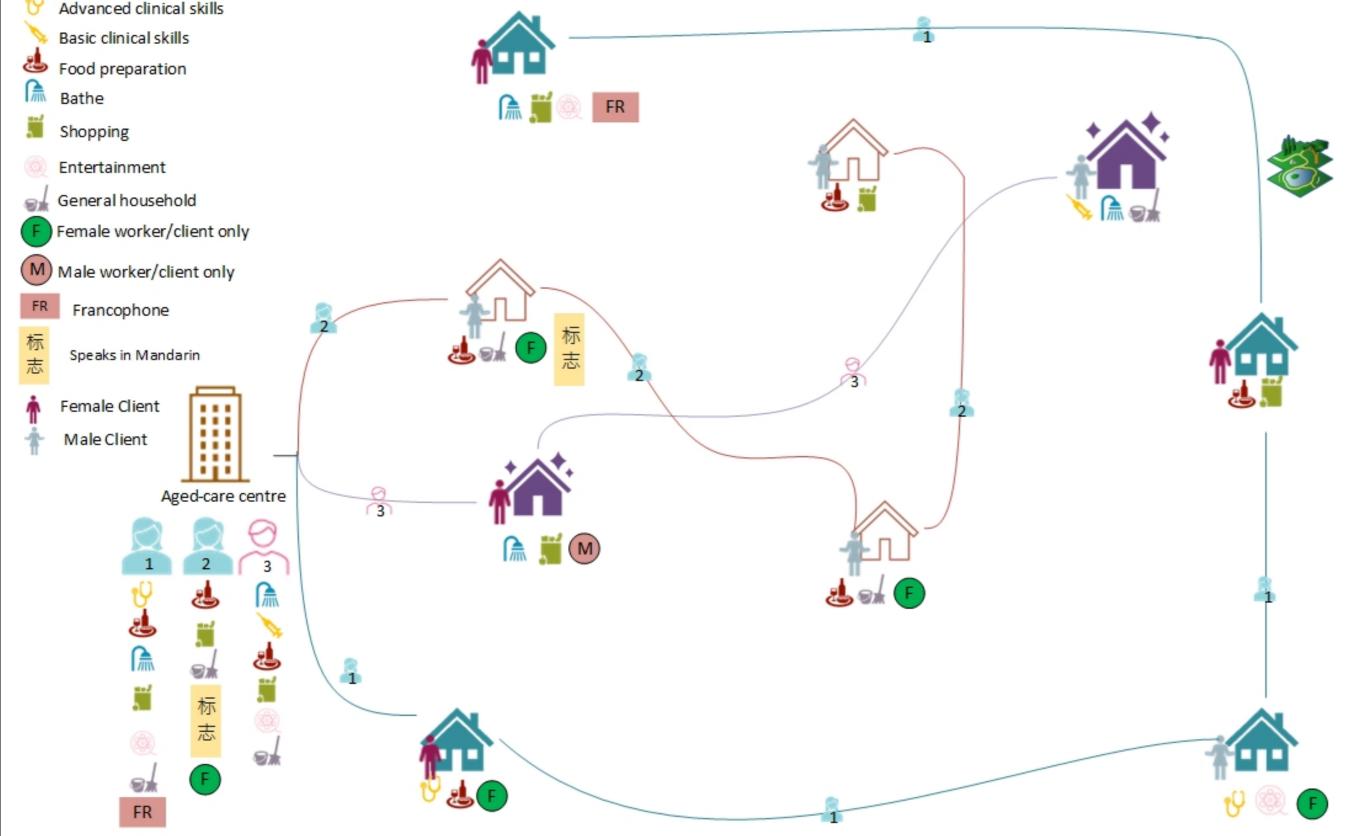
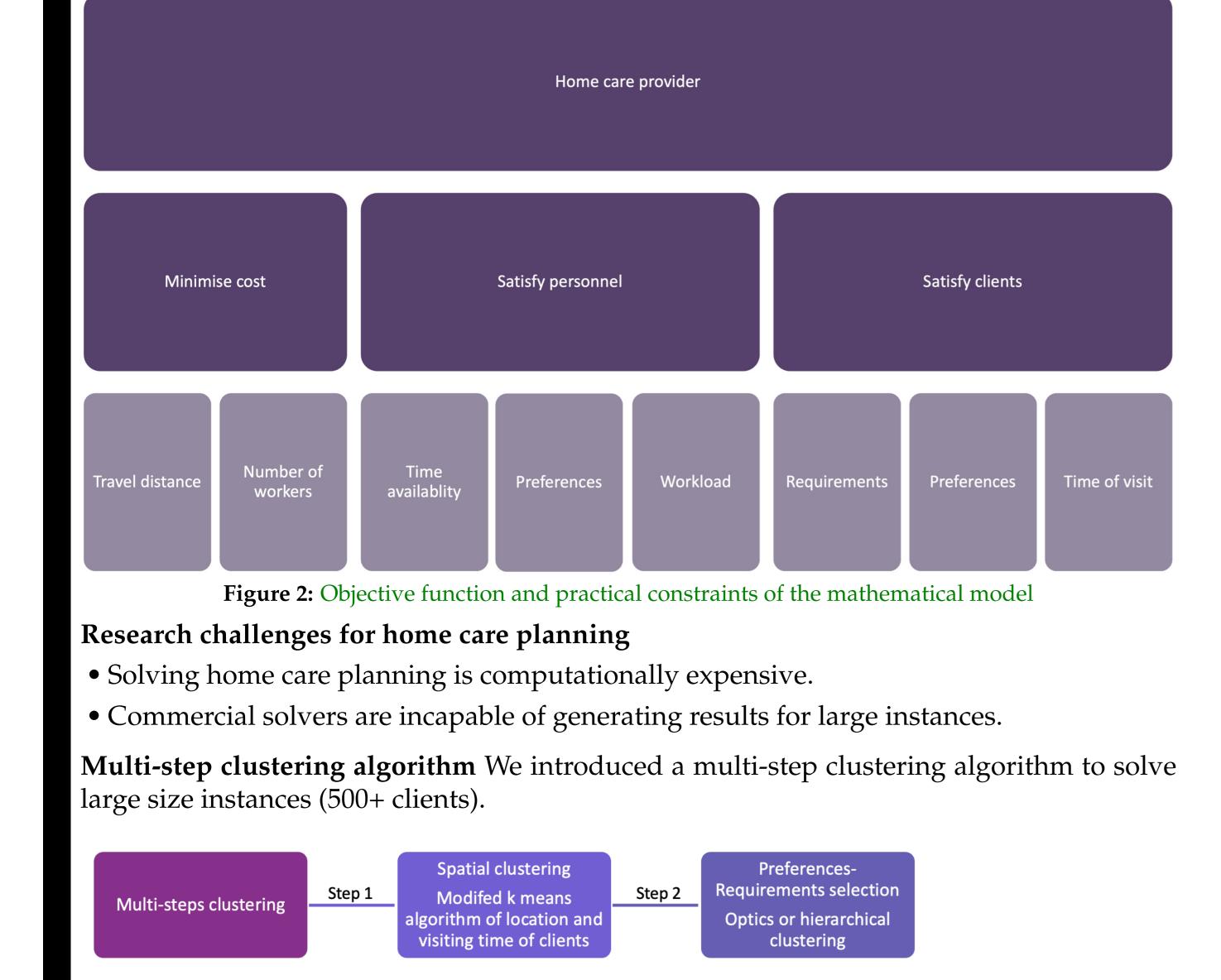


Figure 1: An illustrative example of home care routing and scheduling problem.

Data and Methods

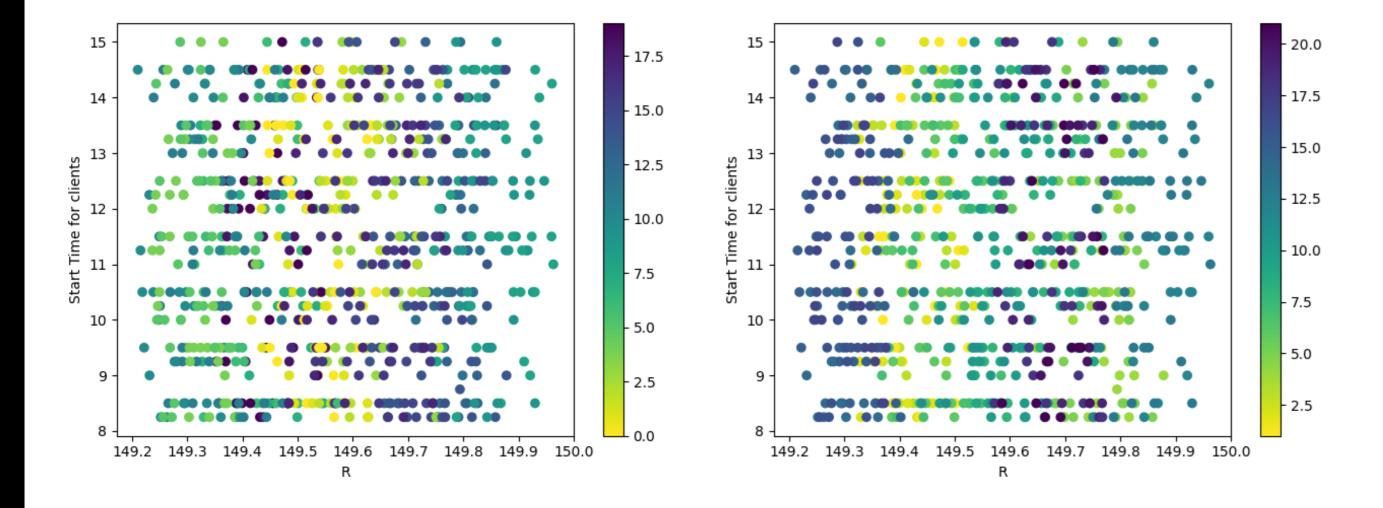

We developed a mathematical model to minimise the total cost of the operation for home care providers with considering real constraints.

G-800-15-AHC	21	193	Min TT-C	105	4207
G-800-15-OP	20	188	Min TT-C	100	4013
G-800-15-AHC	21	220	Min TT	100	4008
G-800-15-OP	20	213	$\operatorname{Min}\mathrm{TT}$	96	3840

Figure 6: Final results of the large-sized benchmark calculated using OP-MKM and AHC-MKM algorithmssmall-sized clusters. No. C: Number of used caregivers. OP: OP-MKM, AHC: AHC-MKM. Min TT: Minimising the total travel time of caregivers, Min TT-C: Minimising the total travel time and number of caregivers, TT: Total travel time of caregivers, TD: Total travel distance of caregivers, Time windows is 15 minutes for all instances.

Instance	TW	Objective	No. W	TT (h)	TD (km)
R169-15	15	Min TT	53	6.73	297
R169-30	30	Min TT	53	6.64	266
R169-45	45	Min TT	53	6.49	260
R169-60	60	Min TT	53	6.30	252
R169-75	75	Min TT	53	6.12	245
R169-90	90	Min TT	53	6.09	244
R169-105	105	Min TT	53	6.04	242
R169-120	_120	Min TT	53	6.01	240
R169-15	15	Min TT-C	48	11.63	465
R169-30	30	Min TT-C	43	13.85	554

Figure 7: Final solution for 169 clients - Large-sized instance. TW: Time windows of clients per minutes. Min TT: Minimising the total travel time of caregivers, Min TT-C: Minimising the total travel time and number of caregivers, TT: Total travel time of caregivers, TD: Total travel distance of caregivers. Total: The final solution



for 800 clients

	Multi-steps clustering						Best	known results	
Instance	Ν	Κ	\mathbf{C}	NV	TD	CT	$\mathrm{Gap}~\%$	Q	TD
C1_2_1	200	50	200	22	2767.97	509.83	2.34	20	2704.58
C1_2_2	200	50	200	21	2890.18	506.1	2.01	18	2949.46
C1_2_3	200	50	200	20	2831.49	505.01	4.56	18	2708.08
C1_2_4	200	50	200	21	2838.23	528.86	7.32	18	2644.61
C1_2_5	200	50	200	21	2883.51	513.83	6.72	20	2702.05
C1_2_6	200	50	200	22	2990.38	501.51	10.71	20	2701.04
C1_2_7	200	50	200	20	2805.67	506.75	3.87	20	2701.04
C1_2_8	200	50	200	21	2908.65	526.18	5.04	18	2769.19
C1_2_9	200	50	200	22	2804.87	529.51	6.13	18	2642.82
$C2_2_1$	200	50	700	8	2023.44	543.89	4.76	6	1931.44
C2_2_2	200	50	700	8	1971.16	516.04	5.80	6	1863.16
C2_2_3	200	50	700	8	1883.08	520.51	6.08	6	1775.08
C2_2_4	200	50	700	8	1801.43	509.01	5.75	6	1703.43
C2_2_5	200	50	700	8	1972.85	522.59	5.00	6	1878.85
C2_2_6	200	50	700	8	1951.35	536.02	5.06	6	1857.35
$C2_2_7$	200	50	700	8	1945.46	505.48	5.19	6	1849.46
C2_2_8	200	50	700	8	1910.53	524.21	4.94	6	1820.53
C2_2_9	200	50	700	8	1936.05	530.78	5.79	6	1830.05
C2_2_10	200	50	700	8	1896.58	515.93	4.98	6	1806.58
R1_2_1	200	50	200	24	4984.11	515.16	4.18	20	4784.11
R1_2_3	200	50	200	22	3565.96	521.8	5.44	18	3381.96
R1_2_4	200	50	200	22	3273.81	503.35	7.06	18	3057.81
R1_2_5	200	50	200	23	4347.86	504.82	5.84	18	4107.86
R1_2_6	200	50	200	22	3795.14	524.39	5.92	18	3583.14
R1_2_7	200	50	200	22	3370.11	505.55	6.98	18	3150.11
R1_2_8	200	50	200	22	3147.99	506.4	6.64	18	2951.99
R1_2_9	200	50	200	22	3964.58	504.22	5.42	18	3760.58
R1_2_10	200	50	200	22	3517.18	525.95	6.54	18	3301.18

Figure 8: The experimental results for Homberger's instances using multi steps clustering approach. N: Number of customers, K: Number of vehicles, C: Capacity of vehicles, NV: Number of occupied vehicles, TD: Travel distance (km), CT: Computational time (s), Gap: Difference of our result with the best published result, Q: Number of occupied vehicles

Results

Figure 3: Multi-steps clustering approach

Summary

- 1. Results of the model demonstrates 48% improvement compared with the current plan of the home healthcare provider.
- 2. An incompatibility report for the current schedule of the homecare provider reveals that not all clients and caregivers are being served according to their preferences and requirements while our model suggests a plan comprising all defined constraints.
- 3. The performance of the clustering framework has been evaluated using Gehring and Homberger's Instances. The gap for almost all instances is less than 10% and the computational time is good enough for operational purposes.
- "Caregiving often calls us to lean into love we didn't know possible." Tia Walker, The Inspired Caregiver: Finding Joy While Caring for Those You Love