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Introduction

Network alignment is useful for multiple
applications that require increasingly large
graphs to be processed. the process of
aligning every pair of nodes between
relatively large networks is time-consuming

pose a framework, called G-CREWE (Graph

Problem

Gi and Gi ' denote an input network and its compressed version, respectively. A
network Gi (Vi, Ei, Fi) has a set of nodes Vi, a set of the edges Ei and the attributes
Fi for the nodes. Gi’ (Vi', Ei’, Fi ') is the compressed version of Gi. Particularly, Gi '

contains a set of uncompressed original nodes Ci ' and a set of super nodes Ui .

Contributions

1. We define a problem for network alignment via both graph compression and
embedding, to achieve a more rapid alignment for nodes in different coarsened
networks while retaining topological consistency during the compression.

2. MERGE is a new compression method that preserves the topological structure
of the original graph. Our approach can be applied to attributed and unattributed
graphs and is unsupervised.

3. Analyze how the compression algorithm can keep the topological consistency in
disjoint networks and maintain the efficiency of the alignhment process.
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Qin, K.K., Salim, E.D., Ren, Y., Shao, W., Heimann, M. and Koutra, D., 2020, October. G-crewe: Graph compression with embedding for network alignment. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management.

ne-npa-jwi@yzulb-iey :jlewy



